3.709 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx\)

Optimal. Leaf size=323 \[ \frac{5 c^3 d^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 g^3 \sqrt{d+e x} (f+g x) (c d f-a e g)}-\frac{5 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{32 g^3 \sqrt{d+e x} (f+g x)^2}+\frac{5 c^4 d^4 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{64 g^{7/2} (c d f-a e g)^{3/2}}-\frac{5 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4} \]

[Out]

(-5*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(32*g^3*Sqrt[d + e*x]*(f + g*x)^2) + (5*c^3*d^3*Sqrt[
a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(64*g^3*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)) - (5*c*d*(a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(24*g^2*(d + e*x)^(3/2)*(f + g*x)^3) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(5/2)/(4*g*(d + e*x)^(5/2)*(f + g*x)^4) + (5*c^4*d^4*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*
e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(64*g^(7/2)*(c*d*f - a*e*g)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.473358, antiderivative size = 323, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {862, 872, 874, 205} \[ \frac{5 c^3 d^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 g^3 \sqrt{d+e x} (f+g x) (c d f-a e g)}-\frac{5 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{32 g^3 \sqrt{d+e x} (f+g x)^2}+\frac{5 c^4 d^4 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{64 g^{7/2} (c d f-a e g)^{3/2}}-\frac{5 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g*x)^5),x]

[Out]

(-5*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(32*g^3*Sqrt[d + e*x]*(f + g*x)^2) + (5*c^3*d^3*Sqrt[
a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(64*g^3*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)) - (5*c*d*(a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(24*g^2*(d + e*x)^(3/2)*(f + g*x)^3) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(5/2)/(4*g*(d + e*x)^(5/2)*(f + g*x)^4) + (5*c^4*d^4*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*
e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(64*g^(7/2)*(c*d*f - a*e*g)^(3/2))

Rule 862

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(n + 1)), x] + Dist[(c*m)/(e*g*(n + 1)), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 872

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] - Dist[(c*e*(m - n - 2))/((n + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x
^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^
2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^5} \, dx &=-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}+\frac{(5 c d) \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^4} \, dx}{8 g}\\ &=-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}+\frac{\left (5 c^2 d^2\right ) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x} (f+g x)^3} \, dx}{16 g^2}\\ &=-\frac{5 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt{d+e x} (f+g x)^2}-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}+\frac{\left (5 c^3 d^3\right ) \int \frac{\sqrt{d+e x}}{(f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{64 g^3}\\ &=-\frac{5 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt{d+e x} (f+g x)^2}+\frac{5 c^3 d^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^3 (c d f-a e g) \sqrt{d+e x} (f+g x)}-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}+\frac{\left (5 c^4 d^4\right ) \int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 g^3 (c d f-a e g)}\\ &=-\frac{5 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt{d+e x} (f+g x)^2}+\frac{5 c^3 d^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^3 (c d f-a e g) \sqrt{d+e x} (f+g x)}-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}+\frac{\left (5 c^4 d^4 e^2\right ) \operatorname{Subst}\left (\int \frac{1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )}{64 g^3 (c d f-a e g)}\\ &=-\frac{5 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt{d+e x} (f+g x)^2}+\frac{5 c^3 d^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^3 (c d f-a e g) \sqrt{d+e x} (f+g x)}-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2} (f+g x)^3}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2} (f+g x)^4}+\frac{5 c^4 d^4 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d f-a e g} \sqrt{d+e x}}\right )}{64 g^{7/2} (c d f-a e g)^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.0856832, size = 79, normalized size = 0.24 \[ \frac{2 c^4 d^4 ((d+e x) (a e+c d x))^{7/2} \, _2F_1\left (\frac{7}{2},5;\frac{9}{2};\frac{g (a e+c d x)}{a e g-c d f}\right )}{7 (d+e x)^{7/2} (c d f-a e g)^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g*x)^5),x]

[Out]

(2*c^4*d^4*((a*e + c*d*x)*(d + e*x))^(7/2)*Hypergeometric2F1[7/2, 5, 9/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)
])/(7*(c*d*f - a*e*g)^5*(d + e*x)^(7/2))

________________________________________________________________________________________

Maple [B]  time = 0.345, size = 665, normalized size = 2.1 \begin{align*}{\frac{1}{192\,{g}^{3} \left ( aeg-cdf \right ) \left ( gx+f \right ) ^{4}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade} \left ( 15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{4}{c}^{4}{d}^{4}{g}^{4}+60\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{3}{c}^{4}{d}^{4}f{g}^{3}+90\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{2}{c}^{4}{d}^{4}{f}^{2}{g}^{2}+60\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) x{c}^{4}{d}^{4}{f}^{3}g-15\,{x}^{3}{c}^{3}{d}^{3}{g}^{3}\sqrt{cdx+ae}\sqrt{ \left ( aeg-cdf \right ) g}+15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){c}^{4}{d}^{4}{f}^{4}-118\,{x}^{2}a{c}^{2}{d}^{2}e{g}^{3}\sqrt{cdx+ae}\sqrt{ \left ( aeg-cdf \right ) g}+73\,{x}^{2}{c}^{3}{d}^{3}f{g}^{2}\sqrt{cdx+ae}\sqrt{ \left ( aeg-cdf \right ) g}-136\,x{a}^{2}cd{e}^{2}{g}^{3}\sqrt{cdx+ae}\sqrt{ \left ( aeg-cdf \right ) g}+36\,xa{c}^{2}{d}^{2}ef{g}^{2}\sqrt{cdx+ae}\sqrt{ \left ( aeg-cdf \right ) g}+55\,x{c}^{3}{d}^{3}{f}^{2}g\sqrt{cdx+ae}\sqrt{ \left ( aeg-cdf \right ) g}-48\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}{a}^{3}{e}^{3}{g}^{3}+8\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}{a}^{2}cd{e}^{2}f{g}^{2}+10\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}a{c}^{2}{d}^{2}e{f}^{2}g+15\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}{c}^{3}{d}^{3}{f}^{3} \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{cdx+ae}}}{\frac{1}{\sqrt{ \left ( aeg-cdf \right ) g}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5,x)

[Out]

1/192*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(15*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x^4*c^4
*d^4*g^4+60*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x^3*c^4*d^4*f*g^3+90*arctanh((c*d*x+a*e)^(1/2
)*g/((a*e*g-c*d*f)*g)^(1/2))*x^2*c^4*d^4*f^2*g^2+60*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x*c^4
*d^4*f^3*g-15*x^3*c^3*d^3*g^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+15*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g
-c*d*f)*g)^(1/2))*c^4*d^4*f^4-118*x^2*a*c^2*d^2*e*g^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+73*x^2*c^3*d^3
*f*g^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-136*x*a^2*c*d*e^2*g^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/
2)+36*x*a*c^2*d^2*e*f*g^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+55*x*c^3*d^3*f^2*g*(c*d*x+a*e)^(1/2)*((a*e
*g-c*d*f)*g)^(1/2)-48*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a^3*e^3*g^3+8*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a
*e)^(1/2)*a^2*c*d*e^2*f*g^2+10*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*c^2*d^2*e*f^2*g+15*((a*e*g-c*d*f)*g
)^(1/2)*(c*d*x+a*e)^(1/2)*c^3*d^3*f^3)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^3/(a*e*g-c*d*f)/(g*x+f)^4/((a*e*g-c*d
*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}}{{\left (e x + d\right )}^{\frac{5}{2}}{\left (g x + f\right )}^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)^(5/2)*(g*x + f)^5), x)

________________________________________________________________________________________

Fricas [B]  time = 2.05866, size = 3784, normalized size = 11.72 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5,x, algorithm="fricas")

[Out]

[1/384*(15*(c^4*d^4*e*g^4*x^5 + c^4*d^5*f^4 + (4*c^4*d^4*e*f*g^3 + c^4*d^5*g^4)*x^4 + 2*(3*c^4*d^4*e*f^2*g^2 +
 2*c^4*d^5*f*g^3)*x^3 + 2*(2*c^4*d^4*e*f^3*g + 3*c^4*d^5*f^2*g^2)*x^2 + (c^4*d^4*e*f^4 + 4*c^4*d^5*f^3*g)*x)*s
qrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x + 2*sqrt(c
*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x))
 - 2*(15*c^4*d^4*f^4*g - 5*a*c^3*d^3*e*f^3*g^2 - 2*a^2*c^2*d^2*e^2*f^2*g^3 - 56*a^3*c*d*e^3*f*g^4 + 48*a^4*e^4
*g^5 - 15*(c^4*d^4*f*g^4 - a*c^3*d^3*e*g^5)*x^3 + (73*c^4*d^4*f^2*g^3 - 191*a*c^3*d^3*e*f*g^4 + 118*a^2*c^2*d^
2*e^2*g^5)*x^2 + (55*c^4*d^4*f^3*g^2 - 19*a*c^3*d^3*e*f^2*g^3 - 172*a^2*c^2*d^2*e^2*f*g^4 + 136*a^3*c*d*e^3*g^
5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f^6*g^4 - 2*a*c*d^2*e*f^5*g^5 + a^2*
d*e^2*f^4*g^6 + (c^2*d^2*e*f^2*g^8 - 2*a*c*d*e^2*f*g^9 + a^2*e^3*g^10)*x^5 + (4*c^2*d^2*e*f^3*g^7 + a^2*d*e^2*
g^10 + (c^2*d^3 - 8*a*c*d*e^2)*f^2*g^8 - 2*(a*c*d^2*e - 2*a^2*e^3)*f*g^9)*x^4 + 2*(3*c^2*d^2*e*f^4*g^6 + 2*a^2
*d*e^2*f*g^9 + 2*(c^2*d^3 - 3*a*c*d*e^2)*f^3*g^7 - (4*a*c*d^2*e - 3*a^2*e^3)*f^2*g^8)*x^3 + 2*(2*c^2*d^2*e*f^5
*g^5 + 3*a^2*d*e^2*f^2*g^8 + (3*c^2*d^3 - 4*a*c*d*e^2)*f^4*g^6 - 2*(3*a*c*d^2*e - a^2*e^3)*f^3*g^7)*x^2 + (c^2
*d^2*e*f^6*g^4 + 4*a^2*d*e^2*f^3*g^7 + 2*(2*c^2*d^3 - a*c*d*e^2)*f^5*g^5 - (8*a*c*d^2*e - a^2*e^3)*f^4*g^6)*x)
, -1/192*(15*(c^4*d^4*e*g^4*x^5 + c^4*d^5*f^4 + (4*c^4*d^4*e*f*g^3 + c^4*d^5*g^4)*x^4 + 2*(3*c^4*d^4*e*f^2*g^2
 + 2*c^4*d^5*f*g^3)*x^3 + 2*(2*c^4*d^4*e*f^3*g + 3*c^4*d^5*f^2*g^2)*x^2 + (c^4*d^4*e*f^4 + 4*c^4*d^5*f^3*g)*x)
*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x +
 d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (15*c^4*d^4*f^4*g - 5*a*c^3*d^3*e*f^3*g^2 - 2*a^2*c^2*d^2
*e^2*f^2*g^3 - 56*a^3*c*d*e^3*f*g^4 + 48*a^4*e^4*g^5 - 15*(c^4*d^4*f*g^4 - a*c^3*d^3*e*g^5)*x^3 + (73*c^4*d^4*
f^2*g^3 - 191*a*c^3*d^3*e*f*g^4 + 118*a^2*c^2*d^2*e^2*g^5)*x^2 + (55*c^4*d^4*f^3*g^2 - 19*a*c^3*d^3*e*f^2*g^3
- 172*a^2*c^2*d^2*e^2*f*g^4 + 136*a^3*c*d*e^3*g^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d
))/(c^2*d^3*f^6*g^4 - 2*a*c*d^2*e*f^5*g^5 + a^2*d*e^2*f^4*g^6 + (c^2*d^2*e*f^2*g^8 - 2*a*c*d*e^2*f*g^9 + a^2*e
^3*g^10)*x^5 + (4*c^2*d^2*e*f^3*g^7 + a^2*d*e^2*g^10 + (c^2*d^3 - 8*a*c*d*e^2)*f^2*g^8 - 2*(a*c*d^2*e - 2*a^2*
e^3)*f*g^9)*x^4 + 2*(3*c^2*d^2*e*f^4*g^6 + 2*a^2*d*e^2*f*g^9 + 2*(c^2*d^3 - 3*a*c*d*e^2)*f^3*g^7 - (4*a*c*d^2*
e - 3*a^2*e^3)*f^2*g^8)*x^3 + 2*(2*c^2*d^2*e*f^5*g^5 + 3*a^2*d*e^2*f^2*g^8 + (3*c^2*d^3 - 4*a*c*d*e^2)*f^4*g^6
 - 2*(3*a*c*d^2*e - a^2*e^3)*f^3*g^7)*x^2 + (c^2*d^2*e*f^6*g^4 + 4*a^2*d*e^2*f^3*g^7 + 2*(2*c^2*d^3 - a*c*d*e^
2)*f^5*g^5 - (8*a*c*d^2*e - a^2*e^3)*f^4*g^6)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2)/(g*x+f)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^5,x, algorithm="giac")

[Out]

Timed out